Перевод: со всех языков на все языки

со всех языков на все языки

The Grain Harvesters

  • 1 Meikle, Andrew

    [br]
    b. 1719 Scotland
    d. 27 November 1811
    [br]
    Scottish millwright and inventor of the threshing machine.
    [br]
    The son of the millwright James Meikle, who is credited with the introduction of the winnowing machine into Britain, Andrew Meikle followed in his father's footsteps. His inventive inclinations were first turned to developing his father's idea, and together with his own son George he built and patented a double-fan winnowing machine.
    However, in the history of agricultural development Andrew Meikle is most famous for his invention of the threshing machine, patented in 1784. He had been presented with a model of a threshing mill designed by a Mr Ilderton of Northumberland, but after failing to make a full-scale machine work, he developed the concept further. He eventually built the first working threshing machine for a farmer called Stein at Kilbagio. The patent revolutionized farming practice because it displaced the back-breaking and soul-destroying labour of flailing the grain from the straw. The invention was of great value in Scotland and in northern England when the land was becoming underpopulated as a result of heavy industrialization, but it was bitterly opposed in the south of England until well into the nineteenth century. Although the introduction of the threshing machine led to the "Captain Swing" riots of the 1830s, in opposition to it, it shortly became universal.
    Meikle's provisional patent in 1785 was a natural progression of earlier attempts by other millwrights to produce such a machine. The published patent is based on power provided by a horse engine, but these threshing machines were often driven by water-wheels or even by windmills. The corn stalks were introduced into the machine where they were fed between cast-iron rollers moving quite fast against each other to beat the grain out of the ears. The power source, whether animal, water or wind, had to cause the rollers to rotate at high speed to knock the grain out of the ears. While Meikle's machine was at first designed as a fixed barn machine powered by a water-wheel or by a horse wheel, later threshing machines became mobile and were part of the rig of an agricultural contractor.
    In 1788 Meikle was awarded a patent for the invention of shuttered sails for windmills. This patent is part of the general description of the threshing machine, and whilst it was a practical application, it was superseded by the work of Thomas Cubitt.
    At the turn of the century Meikle became a manufacturer of threshing machines, building appliances that combined the threshing and winnowing principles as well as the reciprocating "straw walkers" found in subsequent threshing machines and in conventional combine harvesters to the present day. However, he made little financial gain from his invention, and a public subscription organized by the President of the Board of Agriculture, Sir John Sinclair, raised £1,500 to support him towards the end of his life.
    [br]
    Bibliography
    1831, Threshing Machines in The Dictionary of Mechanical Sciences, Arts and Manufactures, London: Jamieson, Alexander.
    7 March 1768, British patent no. 896, "Machine for dressing wheat, malt and other grain and for cleaning them from sand, dust and smut".
    9 April 1788, British patent no. 1,645, "Machine which may be worked by cattle, wind, water or other power for the purpose of separating corn from the straw".
    Further Reading
    J.E.Handley, 1953, Scottish Farming in the 18th Century, and 1963, The Agricultural Revolution in Scotland (both place Meikle and his invention within their context).
    G.Quick and W.Buchele, 1978, The Grain Harvesters, American Society of Agricultural Engineers (gives an account of the early development of harvesting and cereal treatment machinery).
    KM / AP

    Biographical history of technology > Meikle, Andrew

  • 2 McKay, Hugh Victor

    [br]
    b. c. 1866 Drummartin, Victoria, Australia
    d. 21 May 1926 Australia
    [br]
    Australian inventor and manufacturer of harvesting and other agricultural equipment.
    [br]
    A farmer's son, at the age of 17 McKay developed modifications to the existing stripper harvester and created a machine that would not only strip the seed from standing corn, but was able to produce a threshed, winnowed and clean sample in one operation. The prototype was produced in 1884 and worked well on the two acres of wheat that had been set aside on the family farm. By arrangement with a Melbourne plough maker, five machines were made and sold for the 1885 season. In 1886 the McKay Harvester Company was formed, with offices at Ballarat, from which the machines, built by various companies, were sold. The business expanded quickly, selling sixty machines in 1888, and eventually rising to the production of nearly 2,000 harvesters in 1905. The name "Sunshine" was given to the harvester, and the "Sun" prefix was to appear on all other implements produced by the company as it diversified its production interests. In 1902 severe drought reduced machinery sales and left 2,000 harvesters unsold. McKay was forced to look to export markets to dispose of his surplus machines. By 1914 a total of 10,000 machines were being exported annually. During the First World War McKay was appointed to the Business Board of the Defence Department. Increases in the scale of production resulted in the company moving to Melbourne, where it was close to the port of entry of raw materials and was able to export the finished article more readily. In 1909 McKay produced one of the first gas-engined harvesters, but its cost prevented it from being more than an experimental prototype. By this time McKay was the largest agricultural machinery manufacturer in the Southern hemisphere, producing a wide range of implements, including binders. In 1916 McKay hired Headlie Taylor, who had developed a machine capable of harvesting fallen crops. The jointly developed machine was a major success, coming as it did in what would otherwise have been a disastrous Australian harvest. Further developments included the "Sun Auto-header" in 1923, the first of the harvesting machines to adopt the "T" configuration to be seen on modern harvesters. The Australian market was expanding fast and a keen rivalry developed between McKay and Massey Harris. Confronted by the tariff regulations with which the Australian Government had protected its indigenous machinery industry since 1906, Massey Harris sold all its Australian assets to the H.V. McKay company in 1930. Twenty-three years later Massey Ferguson acquired the old Sunshine works and was still operating from there in the 1990s.
    Despite a long-running history of wage disputes with his workforce, McKay established a retiring fund as well as a self-help fund for distressed cases. Before his death he created a charitable trust and requested that some funds should be made available for the "aerial experiments" which were to lead to the establishment of the Flying Doctor Service.
    [br]
    Principal Honours and Distinctions
    CBE.
    Further Reading
    Graeme Quick and Wesley Buchele, 1978, The Grain Harvesters, American Society of Agricultural Engineers (devotes a chapter to the unique development of harvesting machinery which took place in Australia).
    AP

    Biographical history of technology > McKay, Hugh Victor

  • 3 McCormick, Cyrus

    [br]
    b. 1809 Walnut Grove, Virginia, USA
    d. 1884 USA
    [br]
    American inventor of the first functionally and commercially successful reaping machine; founder of the McCormick Company, which was to become one of the founding companies of International Harvester.
    [br]
    Cyrus McCormick's father, a farmer, began to experiment unsuccessfully with a harvesting machine between 1809 and 1816. His son took up the challenge and gave his first public demonstration of his machine in 1831. It cut a 4 ft swathe, but, wanting to perfect the machine, he waited until 1834 before patenting it, by which time he felt that his invention was threatened by others of similar design. In the same year he entered an article in the Mechanics Magazine, warning competitors off his design. His main rival was Obed Hussey who contested McCormick's claim to the originality of the idea, having patented his own machine six months before McCormick.
    A competition between the two machines was held in 1843, the judges favouring McCormick's, even after additional trials were conducted after objections of unfairness from Hussey. The rivalry continued over a number of years, being avidly reported in the agricultural press. The publicity did no harm to reaper sales, and McCormick sold twenty-nine machines in 1843 and fifty the following year.
    As the westward settlement movement progressed, so the demand for McCormick's machine grew. In order to be more central to his markets, McCormick established himself in Chicago. In partnership with C.M.Gray he established a factory to produce 500 harvesters for the 1848 season. By means of advertising and offers of credit terms, as well as production-line assembly, McCormick was able to establish himself as sole owner and also control all production, under the one roof. By the end of the decade he dominated reaper production but other developments were to threaten this position; however, foreign markets were appearing at the same time, not least the opportunities of European sales stimulated by the Great Exhibition in 1851. In the trials arranged by the Royal Agricultural Society of England the McCormick machine significantly outperformed that of Hussey's, and as a result McCormick arranged for 500 to be made under licence in England.
    In 1874 McCormick bought a half interest in the patent for a wire binder from Charles Withington, a watchmaker from Janesville, Wisconsin, and by 1885 a total of 50,000 wire binders had been built in Chicago. By 1881 McCormick was producing twine binders using Appleby's twine knotter under a licence agreement, and by 1885 the company was producing only twine binders. The McCormick Company was one of the co-founders of the International Harvester Company in 1901.
    [br]
    Bibliography
    1972, The Century of the Reaper, Johnson Reprint (the original is in the New York State Library).
    Further Reading
    Graeme Quick and Wesley Buchele, 1978, The Grain Harvesters, American Society of Agricultural Engineers (deals in detail with McCormick's developments).
    G.H.Wendell, 1981, 150 Years of International Harvester, Crestlink (though more concerned with the machinery produced by International Harvester, it gives an account of its originating companies).
    T.W.Hutchinson, 1930, Cyrus Hall McCormick, Seedtime 1809–1856; ——1935, Cyrus Hall McCormick, Harvest 1856–1884 (both attempt to unravel the many claims surrounding the reaper story).
    Herbert N.Casson, 1908, The Romance of the Reaper, Doubleday Page (deals with McCormick, Deering and the formation of International Harvester).
    AP

    Biographical history of technology > McCormick, Cyrus

  • 4 Appleby, John F.

    [br]
    b. 1840 New York, US A
    d. ? USA
    [br]
    American inventor of the knotting mechanism used on early binders and still found on modern baling machines.
    [br]
    As a young man John Appleby worked as a labourer for a farmer near Whitewater in Wisconsin. He was 18 when the farmer bought a new reaping machine. Appleby believed that the concept had not been progressed far enough and that the machine should be able to bind sheaths as well as to cut the corn. It is claimed that while watching a dog playing with a skipping rope he noticed a particular knot created as the dog removed its head from the loop that had passed over it, and recognized the potential of the way in which this knot had been formed. From a piece of apple wood he carved a device that would produce the knot he had seen. A local school teacher backed Appleby's idea with a $50 loan, but the American Civil War and service in the Union Army prevented any further development until 1869 when he took out a patent on a wire-tying binder. A number of the devices were made for him by a company in Beloit. Trials of wire binders held in 1873 highlighted the danger of small pieces of wire caught up in the hay leading to livestock losses. Appleby looked again at the possibility of twine. In 1875 he successfully operated a machine and the following season four were in operation. A number of other developments, not least Behel's "bill hook" knotting device, were also to have an influence in the final development of Appleby's twine-tying binder. As so often happens, it was the vision of the entrepreneur which ultimately led to the success of Appleby's device. In 1877 Appleby persuaded William Deering to produce and market his binder, and 3,000 twine binders, together with the twine produced for them, were put on the market in 1880, with immediate success. Over the next dozen years all harvesting-machine manufacturers adopted the idea, under licence to Appleby.
    [br]
    Further Reading
    G.Quick and W.Buchele, 1978, The Grain Harvesters, American Society of Agricultural Engineers (provides an account of the development of harvesting machinery and the various tying devices developed for them).
    1927, "Twine knotter history", Wisconsin Magazine of History (a more specific account).
    AP

    Biographical history of technology > Appleby, John F.

  • 5 Bell, Revd Patrick

    [br]
    b. 1799 Auchterhouse, Scotland
    d. 22 April 1869 Carmyllie, Scotland
    [br]
    Scottish inventor of the first successful reaping machine.
    [br]
    The son of a Forfarshire tenant farmer, Patrick Bell obtained an MA from the University of St Andrews. His early association with farming kindled an interest in engineering and mechanics and he was to maintain a workshop not only on his father's farm, but also, in later life, at the parsonage at Carmyllie.
    He was still studying divinity when he invented his reaping machine. Using garden shears as the basis of his design, he built a model in 1827 and a full-scale prototype the following year. Not wishing the machine to be seen during his early experiments, he and his brother planted a sheaf of oats in soil laid out in a shed, and first tried the machine on this. It cut well enough but left the straw in a mess behind it. A canvas belt system was devised and another secret trial in the barn was followed by a night excursion into a field, where corn was successfully harvested.
    Two machines were at work during 1828, apparently achieving a harvest rate of one acre per hour. In 1832 there were ten machines at work, and at least another four had been sent to the United States by this time. Despite their success Bell did not patent his design, feeling that the idea should be given free to the world. In later years he was to regret the decision, feeling that the many badly-made imitations resulted in its poor reputation and prevented its adoption.
    Bell's calling took precedence over his inventive interests and after qualifying he went to Canada in 1833, spending four years in Fergus, Ontario. He later returned to Scotland and be-came the minister at Carmyllie, with a living of £150 per annum.
    [br]
    Principal Honours and Distinctions
    Late in the day he was honoured for his part in the development of the reaping machine. He received an honorary degree from the University of St Andrews and in 1868 a testimonial and £1,000 raised by public subscription by the Highland and Agricultural Society of Scotland.
    Bibliography
    1854, Journal of Agriculture (perhaps stung by other claims, Bell wrote his own account).
    Further Reading
    G.Quick and W.Buchele, 1978, The Grain Harvesters, American Society of Agricultural Engineers (gives an account of the development of harvesting machinery).
    L.J.Jones, 1979, History of Technology, pp. 101–48 (gives a critical assessment of the various claims regarding the originality of the invention).
    51–69 (provides a celebration of Bell's achievement on its centenary).
    AP

    Biographical history of technology > Bell, Revd Patrick

  • 6 Carroll, Thomas

    [br]
    b. 1888 Melbourne, Victoria, Australia
    d. 22 February 1968 Australia
    [br]
    Australian engineer responsible for many innovations in combine-harvester design, and in particular associated with the Massey Harris No. 20 used in the "Harvest Brigade" during the Second World War.
    [br]
    Carroll worked first with the Buckeye Harvester Co., then with J.J.Mitchell \& Co. In 1911 he was hired by the Argentinian distributor for Massey Harris to help in the introduction of their new horse-drawn reaper-thresher. Carroll recommended modifications to suit Argentinian conditions, and these resulted in the production of a new model. In 1917 he joined the Toronto staff of Massey Harris as a product design leader, the No. 5 reaper-thresher being the first designed under him. Many significant new developments can be attributed to Carroll: welded sections, roller chains, oil-bath gears, antifriction ball bearings and the detachable cutting table allowing easy transfer of combines between fields were all innovations of which he was the source.
    In the 1930s he became Chief Engineer with responsibility for the design of a self-propelled harvester. The 20 SP was tested in Argentina only eight months after design work had begun, and it was to this machine that the name "combine harvester" was applied for the first time. Improvements to this original design produced a lighter 12 ft (3.65 m) cut machine which came off the production line in 1941. Three years later 500 of these machines were transported to the southern United States, and then gradually harvested their way northwards as the corn ripened. It has been estimated that the famous "Harvest Brigade" harvested over 1 million acres, putting 25 million bushels into store, with a saving in excess of 300,000 labour hours and half a million gallons of fuel.
    Carroll retired from Massey Ferguson in 1961.
    [br]
    Principal Honours and Distinctions
    American Society of Agricultural Engineers C.H. McCormick Gold Medal 1958.
    Bibliography
    1948, "Basic requirements in the design and development of the self propelled combine"
    Agricultural Engineer. 29(3), 101–5.
    Further Reading
    G.Quick and W.Buchele, 1978, The Grain Harvesters, American Society of Agricultural Engineers (provides a detailed account of the development of the combine harvester).
    K.M.Coppick, 1972, gave an account of the wartime effort, which he mistakenly called "Massey Ferguson Harvest Brigade", presented to the Canadian Society for
    Agricultural Engineers, Paper 72–313.
    AP

    Biographical history of technology > Carroll, Thomas

  • 7 Harris, Alanson

    [br]
    b. 1816 Ingersoll, Ontario, Canada
    d. 1894 Canada
    [br]
    Canadian manufacturer of agricultural machinery and co-founder of the Massey Harris Company (later Massey Ferguson).
    [br]
    Alanson Harris was the first often children born to the wife of a circuit rider and preacher. His father's wanderings left Alanson at an early age in charge of the running of the family farm on the Grand River in Canada; also, his father's preference was for tinkering with machines rather than for farming. However, when he was 13 Alanson had to go out to work in order to bring badly needed cash to augment the family income. He worked at a sawmill in the small village of Boston, becoming Boss Sawyer and then Foreman after ten years. In 1839 the family moved to Mount Pleasant, and the following year Alanson married Mary Morgan, the daughter of a well-to-do pioneer Welsh farmer. He entered into a brief partnership with his father to build a sawmill at Whiteman's Creek, but within a few months his father returned to preaching and Alanson became the sole proprietor. After a successful early period Alanson recognized the signs of decline in the timber market, and in 1857 he sold the mill, moved to Beamsville, Niagara, and bought a small factory from which he produced the flop-over hay rake invented by his father. In 1863 he took his eldest son into partnership; the latter returned from a visit to the United States with the sole rights to produce the Kirby mower and reaper. The Crimean War created a market for corn, which gave a great boost to North American farming and, in its turn, to machinery production. This was reinforced by the tariff agreements between the United States and Canada. By the 1880s Harris and Massey between them accounted for two thirds of the harvesting machines sold in Canada, and they also supplied machines abroad. By the end of the decade the mutual benefits of joining forces were apparent and by 1891 an agreement was reached, with Alanson Harris and A.H.Massey on the first board.
    [br]
    Further Reading
    G.Quick and W.Buchele, 1978, The Grain Harvesters, American Society of Agricultural Engineers (refers to Harris and Massey Harris Company in its account of the development of harvest machinery).
    M.Denison, 1949, Harvest Triumphant: The Story of Massey Harris, London (gives a more detailed account of Massey Harris Company).
    AP

    Biographical history of technology > Harris, Alanson

  • 8 Massey, Daniel

    [br]
    b. 1798 Vermont, USA
    d. 1856 Canada
    [br]
    American agricultural machinery manufacturer and co-founder of the Massey Harris Company (now Massey Ferguson).
    [br]
    In about 1800 Daniel Massey's family moved to Upper Canada. At the age of 6 he was sent back to stay with his grandparents in Waterton, USA, where he attended school for three years. He returned to his parents in 1807, and for the next twelve years he remained on his father's farm.
    At the age of 19 he forfeited his rights to his inheritance and rented land further west, which he began to clear. By the age of 21 he owned 200 acres, and during the next twelve years he bought, cleared and sold a further 1,200 acres. In 1820 he married Lucina Bradley from Water-town and returned with her to Canada.
    In 1830 he decided to settle down to farming and brought one of the first US threshing machines into Canada. From frequent visits to his family in the US he would return with new farm equipment, and in 1844 he handed his farm over to his eldest son so that he could concentrate on the development of his farm workshop. In 1845 he formed a brief partnership with R.F.Vaughan, who owned a small factory in Durham County near Lake Ontario. He began the production of ploughs, harrows, scufflers and rollers at a time when the Canadian Government was imposing heavy import duties on agricultural equipment being brought in from the USA. His business flourished and within six months he bought out his partner.
    In 1848 he bought another foundry in Newcastle, together with 50 acres of land, and in 1851 his son Hart joined him in the business. The following year Hart returned from the USA with the sole rights to manufacture the Ketchum mower and the Burrell reaper.
    The advent of the railway four years later opened up wider markets, and from these beginnings the Massey Company was to represent Canada at the Paris Exhibition of 1867. The European market was secured by the successes of the Massey reaper in the "World" trials held in France in 1889. Two years later the company merged with the Harris Company of Canada, to become the Massey Harris Company. Daniel Massey retired from the company four years after his son joined it, and he died the following year.
    [br]
    Further Reading
    Graeme Quick and Wesley Buchele, 1978, The Grain Harvesters, American Society of Agricultural Engineers (gives an account of harvest machinery development, in which Massey Harris played a vital role).
    Merrill Denison, 1949, Harvest Triumphant: The Story of Massey Harris, London.
    AP

    Biographical history of technology > Massey, Daniel

  • 9 Ridley, John

    [br]
    b. 1806 West Boldon, Co. Durham, England
    d. 1887 Malvern, England
    [br]
    English developer of the stripper harvester which led to a machine suited to the conditions of Australia and South America.
    [br]
    John Ridley was a preacher in his youth, and then became a mill owner before migrating to Australia with his wife and daughters in 1839. Intending to continue his business in the new colony, he took with him a "Grasshopper" overbeam steam-engine made by James Watt, together with milling equipment. Cereal acreages were insufficient for the steam power he had available, and he expanded into saw milling as well as farming 300 acres. Aware of the Adelaide trials of reaping machines, he eventually built a prototype using the same principles as those developed by Wrathall Bull. After a successful trial in 1843 Ridley began the patent procedure in England, although he never completed the project. The agricultural press was highly enthusiastic about his machine, but when trials took place in 1855 the award went to a rival. The development of the stripper enabled a spectacular increase in the cereal acreage planted over the next decade. Ridley left Australia in 1853 and returned to England. He built a number of machines to his design in Leeds; however, these failed to perform in the much damper English climate. All of the machines were exported to South America, anticipating a substantial market to be exploited by Australian manufacturers.
    [br]
    Principal Honours and Distinctions
    In 1913 a Ridley scholarship was established by the faculty of Agriculture at Adelaide University.
    Further Reading
    G.Quick and W.Buchele, 1978, The Grain Harvesters, American Society of Agricultural Engineers (includes a chapter devoted to the Australian developments).
    A.E.Ridley, 1904, A Backward Glance (describes Ridley's own story).
    G.L.Sutton, 1937, The Invention of the Stripper (a review of the disputed claims between Ridley and Bull).
    L.J.Jones, 1980, "John Ridley and the South Australian stripper", The History of
    Technology, pp. 55–103 (a more detailed study).
    ——1979, "The early history of mechanical harvesting", The History of Technology, pp. 4,101–48 (discusses the various claims to the first invention of a machine for mechanical harvesting).
    AP

    Biographical history of technology > Ridley, John

  • 10 Berry, George

    [br]
    b. Missouri, USA fl. 1880s
    [br]
    American farmer who developed the first steam-powered, self-propelled combine harvester.
    [br]
    Born in Missouri, George Berry moved to a 4,000 acre (1,600 hectare) farm at Lindsay in California, and between 1881 and 1886 built himself a steam-driven combine harvester. Berry's machine was the first self-propelled harvester and the first to use straw as a fuel. A single boiler powered two engines: a 26 hp (19 kW) Mitchell Fisher engine provided the forward drive, whilst a 6 hp (4 kW) Westinghouse engine drove the threshing mechanism. Cleaned straw was passed by conveyor back to the firebox, where it provided the main fuel. The original machine had a 22 ft cut, but a later machine extended this to 40 ft and harvested 50 acres a day, although on one occasion it achieved the distinction of being the first harvester to cut over 100 acres in one day. The traction engine used for motive power was removable and was used after harvest for ploughing. It was the first engine to be capable of forward and reverse motion.
    In later life Berry moved into politics, becoming a member of the California Senate for Inyo and Tulare in the 1890s.
    [br]
    Further Reading
    G.Quick and W.Buchele, 1978, The Grain Harvesters, American Society of Agricultural Engineers (gives an account of combine-harvester development).
    AP

    Biographical history of technology > Berry, George

  • 11 Moore, Hiram

    [br]
    b. 19 July 1801 New England, USA
    d. c. 1874 Wisconsin, USA
    [br]
    American farmer and inventor who developed the first combine harvester.
    [br]
    Hiram Moore was the son of a New England stonemason. In 1831 he moved to West Michigan to farm, and he and his two brothers settled in Climax in Kalamazoo County.
    Stimulated by a conversation with his neighbour, John Hascall, Moore made a model harvesting machine, which he patented in 1834. By the following year he had built a full-scale machine, but it broke down very quickly. In 1835 he successfully harvested 3 acres left standing for the purpose. Each year alterations and additions were made to the machine, and by 1839 over 50 acres were successfully harvested and threshed in the one operation by the Moore-Hascall machine.
    During further developments which took place in the 1840s, Moore sold much of his interest to Senator Lucius Lyon. By the late 1840s this source of funding was no longer available, and attempts to extend the patent became embroiled in similar attempts by McCormick and Hussey and were blocked by rural pressures stemming from the fear that high machinery prices would ensue if the patents continued.
    Discouraged, Moore moved to Brandon, Wisconsin, where he farmed 600 acres. He was still developing various machines, but was no longer actively involved in the development of the combine harvester. He continued to work his own machine, with which he would cut just a few acres each year.
    [br]
    Further Reading
    Graeme Quick and Wesley Buchele, 1978, The Grain Harvesters, American Society of Agricultural Engineers (describes Hiram Moore's achievements in detail).
    AP

    Biographical history of technology > Moore, Hiram

  • 12 שרב

    שָׁרָבm. (b. h.; preced.) heat of the sun, dry heat. Y.Snh.X, 29b top אם ברורה בטל … בש׳ whether he meant a clear day with dew or a clear day with dry heat. Y.Sabb.XIV, beg.14b; Tosef. ib. XII (XIII), 5; Bab. ib. 106b בשעת הש׳ at the time of dry heat (midday), opp. בשעת הטל. Tanḥ. Shlaḥ 12; Num. R. s. 1620> עד שלא בא הש׳וכ׳ before the heat (of noon) came, you flew off (faded). Gen. R. s. 82 (ref. to כברת הארץ, Gen. 35:16) כבר הבר … והש׳ לא בא the grain was already plentiful, and the rainy season past, but the dry season had not come yet (so that the ground was impassable). Lev. R. s. 348> (ref. to Ruth 2:14) שכן דרך … בשעת הש׳ for that is the way of the harvesters, to dip their bread in vinegar at the hot time of the day. Ib. s. 16 תשעים ותשע בש׳וכ׳ ninety-nine persons die from the effects of heat to one by the hand of heaven. Lam. R. to I, 6; a. fr.

    Jewish literature > שרב

  • 13 שָׁרָב

    שָׁרָבm. (b. h.; preced.) heat of the sun, dry heat. Y.Snh.X, 29b top אם ברורה בטל … בש׳ whether he meant a clear day with dew or a clear day with dry heat. Y.Sabb.XIV, beg.14b; Tosef. ib. XII (XIII), 5; Bab. ib. 106b בשעת הש׳ at the time of dry heat (midday), opp. בשעת הטל. Tanḥ. Shlaḥ 12; Num. R. s. 1620> עד שלא בא הש׳וכ׳ before the heat (of noon) came, you flew off (faded). Gen. R. s. 82 (ref. to כברת הארץ, Gen. 35:16) כבר הבר … והש׳ לא בא the grain was already plentiful, and the rainy season past, but the dry season had not come yet (so that the ground was impassable). Lev. R. s. 348> (ref. to Ruth 2:14) שכן דרך … בשעת הש׳ for that is the way of the harvesters, to dip their bread in vinegar at the hot time of the day. Ib. s. 16 תשעים ותשע בש׳וכ׳ ninety-nine persons die from the effects of heat to one by the hand of heaven. Lam. R. to I, 6; a. fr.

    Jewish literature > שָׁרָב

  • 14 Goucher, John

    [br]
    b. c.1831 Woodsetts, Yorkshire, England
    d. unknown
    [br]
    English engineer and inventor of the rubbing bars used on threshing machines and combine harvesters.
    [br]
    John Goucher was the son of a Yorkshire farmer who began his employed life as a carpenter. In 1851, at the age of 20, he was living on the farm of his father and employing four labourers. He developed and patented a means of wrapping wire around the individual bars of a threshing machine drum in such a way that grooves were formed in them. These grooves allowed the threshed grain to pass through without being crushed or otherwise damaged.
    [br]
    Bibliography
    Other patents credited to him range from devices for the propelling of ships in 1854, beaters for threshing machines in 1848, 1856, and again in 1861, stacking corn and other crops in the same year, improvements to steam boilers in 1863, for preserving life in water in 1867, threshing machines in 1873 and 1874, steam engines in 1884, and threshing machines in 1885.
    AP

    Biographical history of technology > Goucher, John

См. также в других словарях:

  • POOR, PROVISION FOR THE — The Bible makes frequent references to the obligation to help the poor, to render them material assistance, and to give them gifts. This obligation is mentioned in the Prophets (Isa. 58:7, 10; Ezek. 18:7, 16) and especially in the Wisdom… …   Encyclopedia of Judaism

  • Five-Year Plans for the National Economy of the Soviet Union — The Five Year Plans for the National Economy of the USSR (Russian: пятилетка, Pyatiletka ) were a series of nation wide centralized exercises in rapid economic development in the Soviet Union. The plans were developed by the Gosplan based on the… …   Wikipedia

  • Laverda (harvesters) — Laverda is a manufacturer of combine harvesters and hay equipment, based in Breganze, Italy. It was founded in 1873 by Pietro Laverda to produce farming implements in the Province of Vicenza. 1963 was the year the first self propelled Laverda… …   Wikipedia

  • Agriculture in the United Kingdom — A combine harvester in Scotland Agriculture in the United Kingdom uses around 71% of the country s land area and contributes about 0.6% of its gross value added. The UK produces less than 60% of the food it eats and the industry s share of the… …   Wikipedia

  • Combine harvester — A Lely open cab combine. Harvesting oats in a C …   Wikipedia

  • Mähdrescher — Ein Mähdrescher ist eine landwirtschaftliche Erntemaschine zur Ernte von Körnerfrüchten wie insbesondere Getreide, aber auch Raps, Sonnenblumen, Ackerbohnen, Grassamen oder ähnlichem. Wie die zusammengesetzte Bezeichnung (vgl. auch im Englischen …   Deutsch Wikipedia

  • Threshing machine — The thrashing machine, or, in modern spelling, threshing machine (or simply thresher), was a machine first invented by Scottish mechanical engineer Andrew Meikle for use in agriculture. It was invented (c.1784) for the separation of grain from… …   Wikipedia

  • East Kent Light Railway — The East Kent Light Railway was part of the Colonel Stephens group of cheaply built rural light railways in England. Holman Fred Stephens was engineer from its inception, subsequently becoming director and manager. The line ran from Shepherdswell …   Wikipedia

  • New Holland Agriculture — For early history see New Holland Machine Company New Holland Agriculture Type Brand Industry Agricultural equipment Capital lending Founded …   Wikipedia

  • agricultural technology — Introduction       application of techniques to control the growth and harvesting of animal and vegetable products. Soil preparation       Mechanical processing of soil so that it is in the proper physical condition for planting is usually… …   Universalium

  • Agriculture — General …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»